POLS 501: Class Exercises

Jeff Arnold

Feb 18, 2016

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

2016 Nevada Primaries

Consider this CNN poll of the Nevada Democratic and Republican Presidential Caucuses taken on Feb 10-12, 2016: http://elections.huffingtonpost.com/pollster/polls/cnn-23764. The full poll results are here:

http://i2.cdn.turner.com/cnn/2016/images/02/17/topnv1.pdf

- Calculate the standard error and 95% confidence interval of Donald Trump's proportion of support?
- Calculate the standard error and 95% confidence interval of Bernie Sanders proportion of support?
- Can you calculate the confidence interval of the difference between Ted Cruz and Marco Rubio's support? What assumption is violated.

2016 Nevada Primaries

Consider this CNN poll of the Nevada Democratic and Republican Presidential Caucuses taken on Feb 10-12, 2016:

http://elections.huffingtonpost.com/pollster/polls/cnn-23764. The full poll results are here:

http://i2.cdn.turner.com/cnn/2016/images/02/17/topnv1.pdf

- Look at the most recent values of Huffpost Pollster Trend. Use a Chi-squared test to compare the poll-results to those in the Pollster trend.
- Is support for Hillary Clinton and Bernie Sanders independent of age? See p. 33 of the full poll results. Use a Chi-squared test of independence.
- Is support for Hillary Clinton different between men and women? Use a confidence interval and a hypothesis test for a difference of proportions.

Difference in Statistical Significance

Consider two samples of size 100 from independent populations. Sample 1 has a mean of $\bar{x}_1 = 0$, standard deviation of $s_1 = 10$. Sample 2 has a mean of $\bar{x}_2 = 2.3$, and standard deviation of $s_2 = 10$.

- For sample 1, calculate its 95% confidence interval. Can you reject H₀ : μ₁ = 0 at the 5% significance level (assume a two-sided test)?
- Do the same for sample 2?
- Calculate the confidence interval for the difference μ₁ − μ₂? Can you reject H₀ : μ₁ = μ₂?

Overlapping Confidence intervals (1)

Consider two samples of size 100 from independent populations. Sample 1 has a mean of $\bar{x}_1 = 0$, standard deviation of $s_1 = 10$. Sample 2 has a mean of $\bar{x}_2 = 4$, and standard deviation of $s_2 = 10$.

- Calculate the 95% confidence intervals of μ_1 , and μ_2 ?
- ▶ Do the confidence intervals of the mean for sample 1 and sample 2 overlap? From this can you conclude that you can reject H₀ : µ₁ = µ₂ at the the 5% significance level?
- ► Calculate the confidence interval of µ₁ − µ₂. From this can you conclude that you can reject H₀ : µ₁ = µ₂?

Overlapping Confidence Intervals (2)

Consider two samples of size 100 from independent populations. Sample 1 has a mean of $\bar{x}_1 = 0$, standard deviation of $s_1 = 10$. Sample 2 has a mean of $\bar{x}_2 = 3$, and standard deviation of $s_2 = 10$.

- Calculate the 95% confidence intervals of μ_1 , and μ_2 ?
- ▶ Do the confidence intervals of the mean for sample 1 and sample 2 overlap? From this can you conclude that you can reject H₀ : µ₁ = µ₂ at the the 5% significance level?
- ► Calculate the confidence interval of µ₁ − µ₂. From this can you conclude that you can reject H₀ : µ₁ = µ₂?

Class Project

- What is your outcome variable? Numeric or categorical?
- What is your explanatory variable? Numeric or categorical?
- What are appropriate statistical methods to use with this data?
- What would be large (substantively significant) differences in outcome variable?